
BriefFiniteElement.NET Documentation
Release stable

Aug 11, 2023

Contents

1 Under Construction 1

2 Elements Available 3
2.1 Finite Elements . 3
2.2 MPC Elements . 18

3 Loads Available 21
3.1 Elemental Loads . 21
3.2 Nodal Loads . 26

4 Materials Available 27
4.1 UniformIsotropicMaterial . 27
4.2 UniformAnisotropicMaterial . 29

5 Getting Started 31
5.1 Download source code of BriefFiniteElement.NET library . 31
5.2 Create a project and compile BRiefFiniteElement from source code 34
5.3 Install BFE.NET Nuget Library . 42

6 Examples 45
6.1 Small 3D Truss Example . 45
6.2 LoadCase and LoadCombination Example . 52
6.3 Iso Parametric Coordination System Of Elements Example . 55
6.4 Inclined Frame Example . 56
6.5 Element Load Coordination System Example . 58
6.6 Cantilever Beam (Console Beam) Example . 64
6.7 Sections for BarElement . 65

7 Code Desgin Documentation and History 67

8 Miscellaneous Topics 69
8.1 Solving Procedure . 69
8.2 Install Debugger Visualizers . 74

9 Common Objects 79
9.1 Force . 79
9.2 Displacement . 80
9.3 LoadCase . 81

i

9.4 LoadCombination . 81
9.5 Point . 81
9.6 Vector . 82

ii

CHAPTER 1

Under Construction

This documentation is under construction. And some of documented features (like telepathy link or . . .) is not
implemented in main library.

1

BriefFiniteElement.NET Documentation, Release stable

2 Chapter 1. Under Construction

CHAPTER 2

Elements Available

2.1 Finite Elements

2.1.1 BarElement

Overview

A bar element is referred to an 1D element, which only have dimension in one direction. It’s features in an quick
overview:

1. It can act as frame, beam, truss or shaft - see Behaviours section.

Fig. 1: DoFs of BarElement acting as a Frame

2. It can have a cross section - see Cross Section section.

3. It can have a material - see Material section.

4. Several types of loads are possible to be apply on them - see Applicable Loads section.

5. It Does have a local coordination system, apart from global coordination system - see Coordination Systems
section.

6. It is possible to find internal force of it - see Internal Force And Displacement section.

3

BriefFiniteElement.NET Documentation, Release stable

Fig. 2: DoFs of BarElement acting as a Truss

7. It can connect to nodes regarding partial fixity conditions - see BarElement-PartialEndRelease section.

Behaviours

BarElement.Behaviour property is an enum flag (enum flag means an enum that can have several values at same
time). It can be set to frame, beam, truss, shaft etc. The possible behaviours for the BarElement is:

• BarElementBehaviour.EulerBernoulyBeamY : Beam in Y direction based on Euler-Bernouly theory.
DoFs are shown in below image:

Fig. 3: DoFs of BarElementBehaviour.EulerBernoulyBeamY

• BarElementBehaviour.EulerBernoulyBeamZ : Beam in Z direction based on Euler-Bernouly theory.
DoFs are shown in below image:

• BarElementBehaviour.TimoshenkoBeamY : Beam in Y direction based on Timoshenko’s theory (shear
deformation). DoFs are shown in below image:

• BarElementBehaviour.TimoshenkoBeamZ : Beam in Z direction based on Timoshenko’s theory (shear
deformation). DoFs are shown in below image:

• BarElementBehaviour.Truss : Only axial load carrying. DoFs are shown in below image:

4 Chapter 2. Elements Available

BriefFiniteElement.NET Documentation, Release stable

Fig. 4: DoFs of BarElementBehaviour.EulerBernoulyBeamZ

Fig. 5: DoFs of BarElementBehaviour.TimoshenkoBeamY

2.1. Finite Elements 5

BriefFiniteElement.NET Documentation, Release stable

Fig. 6: DoFs of BarElementBehaviour.TimoshenkoBeamZ

Fig. 7: DoFs of BarElementBehaviour.Truss

6 Chapter 2. Elements Available

BriefFiniteElement.NET Documentation, Release stable

• BarElementBehaviour.Shaft : Only torsional moment carrying. DoFs are shown in below image:

Fig. 8: DoFs of BarElementBehaviour.Shaft

These behaviours can be combined , for example a truss member should only have a Truss behaviour, but a 3d frame
member does have two beam behaviour in Y and Z directions, a truss behaviour and a shaft behaviour, (all these
behaviours at the same time).

This is an example which makes a BarElement with truss behaviour which in real acts as a truss member that only can
carry axial load:

var bar = new BarElement();
bar.Behaviour = BarElementBehaviour.Truss;

There is another utility static class named BarElementBehaviours which contains predefined combination be-
haviours for BarElement which is more user (developer) friendly than original enum flag. This is example usage of
BarElementBehaviours class:

var bar = new BarElement();
bar.Behaviour = BarElementBehaviours.FullFrame;

Which is exactly equal to:

var bar = new BarElement();
bar.Behaviour = BarElementBehaviour.Truss | BarElementBehaviour.BeamYEulerBernoulli |
→˓BarElementBehaviour.BeamZEulerBernoulli | BarElementBehaviour.Shaft;

So better to use BarElementBehaviours unless needed manually define combination of behaviours.

• BarElementBehaviours.FullBeam and BarElementBehaviours.
FullBeamWithShearDefomation:

• BarElementBehaviours.FullFrame and BarElementBehaviours.
FullFrameWithShearDeformation:

2.1. Finite Elements 7

BriefFiniteElement.NET Documentation, Release stable

Cross Section

BarElement is modelled as a 1D element, and it needs to have geometrical values of it’s cross section (like A, Iy, Iz,
etc.). BarElement.CrossSection does define a cross section for BarElement. The type Base1DSection
is base class that is used for defining a cross section for bar element. This class is a general class which can gives every
information of section’s geometric properties at specific location of length of element. All other cross sections of bar
element are inherited from Base1DSection class.

UniformParametric1DSection

Inherited from Base1DSection, defines a uniform section for the BarElement. Uniform section means that
section does not change along the length of bar. Parametric means that properties are parametrically defined one by
one. for example if we have a circular section, with Iy = Iz = J/2 = 1e-6 m^4, A = 2e-6 m^4 then:

var section = new UniformParametric1DSection();
section.A = 1e-4;
section.Iy = section.Iz = 1e-6;
section.J = 2e-6;

var bar = new BarElement();
bar.CrossSection = section;

Hint: Note that two properties Ay and Az of UniformParametric1DSection, are about shear areas of section
and their value will not be used unless BarElement have one of `TimoshenkoBeam` behaviours.

UniformGeometric1DSection

Inherited from Base1DSection, defines a uniform section for the BarElement. Uniform section means that
section does not change along the length of bar. Geometrix means that section properties are defined as polygon.

Important Note: In UniformGeometric1DSection it is only possible to define one polygon. if polygon contains nested
holes etc., then it should convert to one polygon. See Sections for BarElement

Important Note: The way that geoemtric properties are calculated for section is defined here: (https://en.wikipedia.
org/wiki/Second_moment_of_area#Any_polygon). Maybe this method be not applicable to thin walled section.

Important Note: there is no analystical solution for findind torsional constant J for noncircular sections, in those cases
user must set UniformGeometric1DSection.JOverrided property to correct value, otherwise polar area moment will be
used (https://github.com/BriefFiniteElementNet/BriefFiniteElement.Net/issues/38)

Important Note: The geometric section is defined in Y-Z plane of local coordination system of element. the X axis in
local coordination system is the beam length direction.

Material

BarElement.Material property defines a material for this element. the type BaseMaterial is base class that
is used for defining a material for a finite element. This class is a general class which can gives every information of
section’s materials at specific location of length of element.

8 Chapter 2. Elements Available

https://en.wikipedia.org/wiki/Second_moment_of_area#Any_polygon
https://en.wikipedia.org/wiki/Second_moment_of_area#Any_polygon
https://github.com/BriefFiniteElementNet/BriefFiniteElement.Net/issues/38

BriefFiniteElement.NET Documentation, Release stable

UniformIsotropicMaterial

This class is inherited from BaseMaterial and defines a uniform material for the finite elements. Uniform material
means that material does not change along the length of bar. Parametric means that properties are parametrically
defined. for example if we have a steel material, with Elastic module = 210 GPa = 210e9 Pa, and Poisson’s ratio = 0.3
then:

using BriefFiniteElement.Elements
using BriefFiniteElement.Materials

var material = UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);
var bar = new BarElement();

bar.Material = material;

Applicable Loads

There are several loads currently applicable to `BarElement`. UniformLoad , ConcentratedLoad and NonUni-
formLoad are applicable loads.

Coordination Systems

Local Coordination System

Local coordination system for BarElement has tree axis that we name x', y' and z'.

TODO with images

Relation of global and local system

“The global axes are brought to coinside with the local member axes by seauence of rotation about y, z and x axes
respectively. This is refered to an y-z-x transformation.” ref[0].

Imagine a bar element with start node N1 located at (x1, y1, z1) and end node N2 located at (x2,y2,z2).
Four steps are needed to find the directions of the local axis x’-y’-z’:

• Step 1:

Move the element in a way that N1 be placed at origins of global system. TODO: Image

• Step 2:

Rotate global system about global Y axis rotated X axis goes under element length (shown as 𝛽 in image below). Note
that if element is vertical (e.g. x1 = x2 and y1 = y2 and z1 z2) no need to do this step. TODO: Image

• Step 3:

Rotate the system from previous step about it’s Z axis in a way that X axis go exactly through same direction of
element’s length (shown as 𝛾 in image below). TODO: Image

• Step 4:

If element have any custom web rotation 𝛼, do rotate system about it’s X axis by 𝛼: TODO: Image

the result system is local system of bar element.

2.1. Finite Elements 9

BriefFiniteElement.NET Documentation, Release stable

Iso Parametric Coordination System

Apart from local and global coordination systems for elements, there is another system based on isoparametric formu-
lation/representation, which is used extensively in finite element method. In BFE also in many places instead of local
coordinate system, the iso parametric coordination is used.

Iso Parametric Coordination system for BarElement with two nodes

Based on

• At the beginning point of the element, where x=0 the iso parametric coordinate is 𝜉=-1

• At the central point of the element, where x=L/2, and L is length of elements, the iso parametric coordinate is
𝜉=0

• At the end point of the element, where x=L, and L is length of elements, the iso parametric coordinate is 𝜉=1

In bar element with two nodes the relation between isoparamtric 𝜉 coordinate and local x coordinate is:

x = (𝜉 + 1)*L/2 and subsequently

𝜉 = (2*x-L)/L

Iso Parametric Coordination system for BarElement with more than two nodes

There is no simple formula to show relation of 𝜉 and x in elements with more than two nodes, but there is a
method for conversion between local coordinate system and isoparametric coordination system BarElement.
LocalCoordsToIsoCoords and BarElement.IsoCoordsToLocalCoords which works right with any
number of node. As this method is defined in base Element class, input and output of these is double array, but as
BarElement is one dimensional element, then only first member of array have value and that is X or 𝜉.

ref[1]: Finite Element Analysis: Theory and Programming by by C Krishnamoorthy p.243

Internal Force And Displacement

After solving the Model, BarElement will have some internal forces. Internal force at each location of element
can be different and it can be retrieved with method BarElement.GetInternalForceAt and BarElement.
GetExactInternalForceAt. both methods gives the internal force at specified iso parametric coordinate. The
difference between BarElement.GetInternalForce and BarElement.GetExactInternalForce is
that BarElement.GetInternalForceAt only consider nodal displacement for internal force but Exact one
(GetExactInternalForceAt) also considers effect of elemental loads (like distributed loads) in element in ad-
dition to nodal displacements. Internal force means 3 forces and 3 moments: axial load (Fx), two shear loads (Fy,Fz),
torque moment (Mx) and two biaxial moments (My,Mz) which are shown in picture:

Note that value returned from this method is in element’s local coordination system.

10 Chapter 2. Elements Available

BriefFiniteElement.NET Documentation, Release stable

For example the beam below with both ends fixed, after solve does not have any nodal displacement, so the standard
FEM formula D*B*u will return 0, so BarElement.GetInternalForceAt for this example returns 0, but
BarElement.GetExactInternalForceAt at middle will not return zero. . .

var model = new Model();

Node n1, n2;

model.Nodes.Add(n1 = new Node(0, 0, 0) { Constraints = Constraints.Fixed });
model.Nodes.Add(n2 = new Node(1, 0, 0) { Constraints = Constraints.Fixed });

var elm = new BarElement(n1, n2);

elm.Section = new BriefFiniteElementNet.Sections.UniformParametric1DSection(a: 0.
→˓01, iy: 0.01, iz: 0.01, j: 0.01);

elm.Material = BriefFiniteElementNet.Materials.UniformIsotropicMaterial.
→˓CreateFromYoungPoisson(210e9, 0.3);

var load = new Loads.UniformLoad();

load.Case = LoadCase.DefaultLoadCase;
load.CoordinationSystem = CoordinationSystem.Global;
load.Direction = Vector.K;
load.Magnitude = 10;

elm.Loads.Add(load);
model.Elements.Add(elm);

model.Solve_MPC();

var f1 = elm.GetInternalForceAt(0);
var f2 = elm.GetExactInternalForceAt(0);

TODO: internal displacement

2.1. Finite Elements 11

BriefFiniteElement.NET Documentation, Release stable

Partial End Release

By default connection of BarElement into end nodes are rigid, e.g. all DoFs of BarElement are connected to end node,
but there are some situation that there is need for partial connections.

BarElement.NodalReleaseConditions defines the partial end release of BarElement on each of it’s
nodes. Also BarElement.StartReleaseCondition and BarElement.EndReleaseCondition uses
this property to get/set release conditions for start and end nodes:

/// <summary>
/// Gets or sets the connection constraints od element to the start node
/// </summary>
public Constraint StartReleaseCondition
{

get { return _nodalReleaseConditions[0]; }
set { _nodalReleaseConditions[0] = value; }

}

/// <summary>
/// Gets or sets the connection constraints od element to the end node
/// </summary>
public Constraint EndReleaseCondition
{

get { return _nodalReleaseConditions[_nodalReleaseConditions.Length - 1]; }
set { _nodalReleaseConditions[_nodalReleaseConditions.Length - 1] = value; }

}

There are 3 properties for BarElement for taking end releases into consideration:

‘‘ public Constraint StartReleaseCondition{get;set;} public Constraint EndReleaseCondition{get;set;} public Con-
straint[] NodalReleaseConditions{get;set;} ‘‘

StartReleaseCondition Gets or sets the release condition to first node, EndReleaseConditionGets or sets the release
condition to last node and NodalReleaseConditions Gets or sets the release condition to all nodes (it is an array).

2.1.2 TriangleElement

Overview

A triangle element is referred to a 2D element, which only have dimension in two direction. It’s features in an quick
overview:

1. It can act as thin shell, thick shell, plate bending or membrane - see Behaviours section.

Fig. 9: DoFs of TriangleElement acting as a Shell

2. It can have a cross section - see Cross Section section.

12 Chapter 2. Elements Available

BriefFiniteElement.NET Documentation, Release stable

Fig. 10: DoFs of TriangleElement acting as a Membrane

3. It can modeled as PlaneStress or PlainStrain - see TriangleElement-MembraneFormulation section.

4. It can have a material - see Material section.

5. Several types of loads are possible to be apply on them - see Applicable Loads section.

6. It Does have a local coordination system, apart from global coordination system - see Coordination Systems
section.

7. It is possible to find internal force of it - see Internal Force section.

Behaviours

TriangleElement.Behaviour property is an enum flag (enum flag means an enum that can have several values
at same time). It can be set to ThinShell, TODO etc. The possible behaviours for the TriangleElement is:

• TriangleElementBehaviour.Membrane : Membrane behaviour for in-plane displacement. DoFs are
shown in below image:

Fig. 11: DoFs of TriangleElementBehaviour.PlateBending

The mathematic formulation of this behaviour is based on standard CST (Constant Stress/Strain Triangle) element.

2.1. Finite Elements 13

https://en.wikipedia.org/wiki/Plane_stress
https://en.wikipedia.org/wiki/Plane_stress

BriefFiniteElement.NET Documentation, Release stable

• TriangleElementBehaviour.PlateBending : PlateBending behaviour for in-plane rotations and out
of plane displacements. DoFs are shown in below image:

Fig. 12: DoFs of TriangleElementBehaviour.PlateBending

• TriangleElementBehaviour.DrillingDof : behaviour for out of plane rotations. DoFs are shown in
below image:

The mathematic formulation of this behaviour is based on DKT (Discrete Kirchhoff Triangle) element.

These behaviours can be combined , for example a Membrane member should only have a Membrane behaviour, but
a thin shell member does have behaviour of platebending and a membrane behaviour (both at the same time).

This is an example which makes a TriangleElement with plate bending behaviour which in real acts as a plate bending
member that only can carry normal loads and in plate bendings:

var tri = new TriangleElement();
tri.Behaviour = TriangleElementBehaviour.ThinPlate;

There is another utility static class named TriangleElementBehaviours which contains predefined combina-
tion behaviours for TriangleElement which is more user (developer) friendly than original enum flag. This is example
usage of TriangleElementBehaviours class:

var tri = new TrignaleElement();
tri.Behaviour = TriangleElementBehaviours.ThinShell;

Which is exactly equal to:

var tri = new TrignaleElement();
tri.Behaviour = TriangleElementBehaviour.ThinPlate | TriangleElementBehaviour.
→˓Membrane | TriangleElementBehaviour.DrillingDof;

So better to use TriangleElementBehaviours unless needed manually define combination of behaviours.

• TriangleElementBehaviours.ThinShell and TriangleElementBehaviours.
ThickShell:

14 Chapter 2. Elements Available

BriefFiniteElement.NET Documentation, Release stable

Fig. 13: DoFs of TriangleElementBehaviour.DrillingDof

Fig. 14: DoFs of TriangleElementBehaviours.ThinShell and TriangleElementBehaviours.
ThickShell

2.1. Finite Elements 15

BriefFiniteElement.NET Documentation, Release stable

Cross Section

TriangleElement is modelled as a 2D element, and it needs to have thickness values of it’s cross section.
TriangleElement.Section does define a cross section for TriangleElement. The type Base2DSection
is base class that is used for defining a cross section for triangle element. This class is a general class which can
gives every information of section’s geometric properties at specific location of surface of element. In this case
Base2DSection gets the isometric location of any arbitrary point and returns the thickness of section at that point.
All other cross sections of triangle element are inherited from Base2DSection class.

UniformParametric2DSection

Inherited from Base2DSection, defines a uniform section for the TriangleElement. Uniform section means
that section thickness or probably other geometric properties does not change along the surface of trignale. Parametric
means that properties are parametrically defined one by one. for example if we have a section, with thickness = 1 cm
then:

var section = new Base2DSection();
section.Thickness = 0.01;

var tri = new TriangleElement();
tri.CrossSection = section;

Material

TriangleElement.Material property defines a material for this element. the type
BaseTriangleMaterial is base class that is used for defining a material for bar element. This class is a
general class which can gives every information of section’s materials at specific location of surface of element.

All other materials of triangle section are inherited from BaseTriangleMaterial class.

UniformParametricTriangleMaterial

This class is inherited from BaseTriangleMaterial and defines a uniform material for the triangle el-
ement. Uniform material means that material does not change along the surface of triangle. Parametric
means that properties are parametrically defined (like `UniformParametricTriangleMaterial.E` and
`UniformParametricTriangleMaterial.G`). for example if we have a steel material, with E = 210 GPa,
G = 80 GPa then:

var steelMaterial = new UniformParametricTriangleMaterial();
steelMaterial.E = 210e9;//210 * 10^9 Pas
steelMaterial.G = 80e9;//80 * 10^9 Pas

var tri = new TriangleElement();
tri.Material = steelMaterial;

Applicable Loads

There are several loads currently applicable to `TriangleElement`.

16 Chapter 2. Elements Available

BriefFiniteElement.NET Documentation, Release stable

Uniform Load

Uniform load is a uniform, per length load in [N/m^2] dimension, which is applied on the bar element.

[image]

The uniform load have three components, Ux, Uy, Uz which is per length force component in X, Y and Z directions.
Please note that if coordination system of load is set to global, Ux and Uy and Uz will be in global directions, else will
be in element’s local coordination system. TODO: uniform load changed

Example:

Concentrated Load

Concentrated load is a single concentrated load which is applying in a point which exists on the BarElement’s
length.

Example:

Trapezoidal Load

Trapezoidal load is a linearly varying load, with specific start and end, which is applied on the bar element. This is
more general than UniformLoad

Coordination Systems

Local Coordination System

Local coordination system for TriangleElement has tree axis that we name x, y and z.

Relation of global and local system

local axis x is parallel with the point that connects node[0] to node[1] of element.

local axis z is normal to triangle’s surface.

local axis y is normal to both x and z.

This formulation (and image above) taken from Development of Membrane, Plate and Flat Shell
Elements in Java from author Kansara, Kaushalkumar available from https://vtechworks.
lib.vt.edu/handle/10919/9936

Internal Force

After solving the Model, TriangleElements will have some internal forces. Internal force at each location of
element can be different and it can be catched with method TriangleElement.GetInternalForce. with get
the location that you need the internal force as input. Internal force means membrane and bending tensors which are
shown in picture: TODO show with returned axis directions

Note that value returned from this method is in element’s local coordination system. to convert to global system:
TODO

2.1. Finite Elements 17

BriefFiniteElement.NET Documentation, Release stable

Fig. 15: local coordination system of TriangleElement

2.1.3 TetrahedronElement

Tetrahedron element is only volume element in BFE.

DoFs Tetrahedron element in BFE does have four nodes, each one for one corner of tetrahedron. The tetrahedron
element only support 3 translational DoF for each node.

There are several finite elements available in library. Each finite element does provide stiffness, mass and damp
matrices. Their difference with special elements is that normal elements does provide stiffness, mass and damp
matrices and usually have material, geometrical properties (like section on thickness). Finite elements are inherited
from BriefFiniteElement.Elements.Element class.

Overview of Finite Elements available:

• BarElement: A 1D, 2 noded element

• TriangleElement: A 2D, 3 noded element

• TetrahedronElement: A 3D, 4 noded element

2.2 MPC Elements

2.2.1 RigidElement

RigidElement is an MpcElement, with virtually infinite stiffness. Nodes contained in a RigidElement have
no relative displacement regarding eachother. Best usecase is rigid diaphragm in structures. Some other use cases of
rigid element can be found at: https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/lesson_16.pdf

This does represents a nondeformable element or element with infinite stiffness which does not deform. For more info
see http://www.codeproject.com/Articles/850733/RigidElements-in-BriefFiniteElement-NET

ref[1]: http://www.edwilson.org/book-wilson/07-cons~1.doc

TODO: an appropriated image

18 Chapter 2. Elements Available

https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/lesson_16.pdf
http://www.codeproject.com/Articles/850733/RigidElements-in-BriefFiniteElement-NET
http://www.edwilson.org/book-wilson/07-cons~1.doc

BriefFiniteElement.NET Documentation, Release stable

2.2.2 VirtualSupport

VirtualSupport is an MpcElement, that can fix any free dofs of model. Technically there is no difference
between using Node.Constraint and VirtualSupport element in these two version of code, both will have exactly same
result after solve:

for(var i = 0;i < 10;i ++)
{

model.Nodes[i].Constraint = Constraints.FixedDx;
model.Nodes[i].Settlements = new Displacement(0.1,0,0,0,0,0);

}

var elm = new VirtualConstraint();
elm.Constraint = Constraints.FixedDx;
elm.Settlement = new Displacement(0.1,0,0,0,0,0);

for(var i = 0;i < 10;i ++)
elm.Nodes.Add(model.Nodes[i]);

model.MpcElements.Add(elm);

but the second one will let user to define settlements for specific LoadCases. Or set some constraints for only specific
load cases. for example it is possible to have set constraint in loadcase A when rigid elements are applied only in
analysing with load case B.

2.2.3 HingLink

HingLink is an MpcElement which connects only translational DoFs of nodes together. There is a restriction
where node’s location must be same (exactly same) otherwise it throws exception. example usage are connecting a
slab into beam with simple connection. where slab for example have 4 nodes, and 4 column in corners each one have
2 nodes, total nodes are 12 nodes and top nodes of columns are connected to slab, each with a separate hing link.

hing link is some sort of link that connects two nodes to each other, but only connect their Dx, Dy, Dz together not
rotations of them. Limitation is that both nodes should have same location. Using this sort of link, it is possible to
model end release in Shells, etc.

MPC elements or Multi-Point Constraint elements, are kind of virtual elements that binds several DoFs of a model
together and reduces the overall number of independent DoFs using technique MPC (Multi-Point Constraints) and
Master/Slave model. All MPC elements are inherited from ‘‘BriefFiniteElement.Elements.MpcElement’.

Overview of special elements available:

• TelepathyLink: Partially binds DoFs of several nodes together

• RigidElement: An non-deformable element with virtually infinite (∞) stiffness

• VirtualConstraint: An element that virtually binds its nodes into ground and make them support
nodes.

more info: https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/lesson_16.pdf

MpcElement have a feature than can be taken into account in particular loads. For example when analyzing a Model
against Eq. loads, a rigid diaphragm (with infinite stiffness) can be considered. This rigid diaphragm should not be ap-
plied when model is solving against other loads like Dead or Live loads. There are three properties for MpcElement
class regarding this feature:

• MpcElement.UseForAllLoads:

2.2. MPC Elements 19

https://mashayekhi.iut.ac.ir/sites/mashayekhi.iut.ac.ir/files//files_course/lesson_16.pdf

BriefFiniteElement.NET Documentation, Release stable

It is false by default, if set to true then MpcElement will be applied in every situation and all loads. Set this to true,
when MpcElement should be considered against all loads.

• MpcElement.AppliedLoadCases

By defaults is empty, MpcElement will be applied when structure is analysing with LoadCases inside this.

• MpcElement.AppliedLoadTypes

By defaults is empty, MpcElement will be applied when structure is analysing with a LoadCase which have a
LoadCase.LoadType which is present inside this.

Example 1: An MpcElement (rigid element) which connect several nodes and only taken into account with loads with
type of Eq.

In this model there are TODO number of roofs, that are only considered when Eq. loads are applied.

20 Chapter 2. Elements Available

CHAPTER 3

Loads Available

TODO image

3.1 Elemental Loads

3.1.1 ConcentratedLoad

ConcentratedLoad in namespace BriefFiniteElementNet.Loads, is a concentrated load which can ap-
ply on 1D (like BarElement), 2D (like TriangleElement) or 3D (like TetrahedronElement) elements.

Force

ConcentratedLoad.Forcewhich is a Force property, defines the amount of force that is applied on the element
body.

IsoPoint

The iso-parametric location of force inside element’s body

CoordinationSystem

ConcentratedLoad.CoordinationSystem which is a enum typed property, defines the coordination system
of load. It can only have two different values of CoordinationSystem.Global or CoordinationSystem.
Local:

• CoordinationSystem.Global: The load is assumed in global coordination system

• CoordinationSystem.Local: The load is assumed in local coordination system of element that load is
applied to (each element type have different local coordination system which is stated in appropriated section).

Look at Element Load Coordination System Example for more information on how to use.

21

BriefFiniteElement.NET Documentation, Release stable

3.1.2 UniformLoad

UniformLoad in namespace BriefFiniteElementNet.Loads, is a constant distributed load which can apply
on 1D (like BarElement), 2D (like TriangleElement) or 3D (like TetrahedronElement) elements. Self
weight loads are good examples that can be modeled with this type of load.

Here are examples illustrated in image (note that many of these loads are not available in this library!)

Fig. 1: UnformLoad applying on a BarElement’s body

Fig. 2: UnformLoad applying on a TriangleElement’s body

Fig. 3: UnformLoad applying on a TetrahedronElement’s body

Magnitude

UniformLoad.Magnitude which is a double property of UniformLoad, defines the Magnitude of uniform
load. Based on UniformLoad is applied on what element, the dimension is different:

• If it is applied on a 1D element like BarElement, then the dimension is [N/m]

22 Chapter 3. Loads Available

BriefFiniteElement.NET Documentation, Release stable

Fig. 4: UnformLoad applying on one of a TriangleElement’s edges

Fig. 5: UnformLoad applying on one of a TetrahedronElement’s faces

Fig. 6: UnformLoad applying on one of a TetrahedronElement’s edges

3.1. Elemental Loads 23

BriefFiniteElement.NET Documentation, Release stable

• If it is applied on a 2D element like TriangleElement, then the dimension is [N/m^2]

• If it is applied on a 3D element like TetrahedronElement, then the dimension is [N/m^3]

Coordination System

UniformLoad.CoordinationSystem which is a enum typed property of UniformLoad, defines the coor-
dination system of uniform load. It can only have two different values of CoordinationSystem.Global or
CoordinationSystem.Local:

• CoordinationSystem.Global: The load is assumed in global coordination system

• CoordinationSystem.Local: The load is assumed in local coordination system of element that load is
applied to (each element type have different local coordination system which is stated in appropriated section).

Look at Element Load Coordination System Example for more information on how to use.

LoadDirection (Obsolete: see Direction)

UniformLoad.LoadDirection which is a enum typed property of UniformLoad, defines the direction
of uniform load. It can only have three different values of LoadDirection.X or LoadDirection.Y or
LoadDirection.Z.

Look at examples section for more information on how to use.

TODO: obsolete the enum LoadDirection and use a vector for more enhanced usage.

Direction

UniformLoad.Direction which is a property of UniformLoad with type of Vector, defines the direction of
uniform load. An instance of Vector class defines a vector in 3d space with three components of X, Y and Z. Note
that length of vector is not takken into account, only its direction is used.

Look at examples section and definition of local CoordinationSystem in BarElement, TriangleElement, etc. for more
information on how to use.

Examples

Related Examples:

• _element-load-coordination-system

3.1.3 PartialNonUniformLoad

PartialNonUniformLoad in namespace ‘‘ BriefFiniteElementNet.Loads‘‘, is a varying distributed load which
can apply on 1D (like BarElement), 2D (like TriangleElement) or 3D (like TetrahedronElement) ele-
ments.

Here are examples illustrated in image:

24 Chapter 3. Loads Available

BriefFiniteElement.NET Documentation, Release stable

Fig. 7: PartialNonUniformLoad applying on a BarElement

SeverityFunction

Severity function which defines how much is the amount of load in each iso location. For example a linear varying
load from xi = -0.5 to xi = +0.5 and start magnitude = 100 N/m and end magnitude 50 N/m, severity function in -0.5
equals 100 and severity function +0.5 equals 50

StartLocation

Isoparametric coordination of start location of load on the element. all members of TrapezoidalLoad.StartIsoLocations
must be in range [-1,+1].

EndLocations

Isoparametric coordination of end location of load on the element. all members of TrapezoidalLoad.EndIsoLocations
must be in range [-1,+1].

Coordination System

PartialNonUniformLoad.CoordinationSystem which is a enum typed property of
PartialNonUniformLoad, defines the coordination system of trapezoidal load. It can only have two dif-
ferent values of CoordinationSystem.Global or CoordinationSystem.Local:

• CoordinationSystem.Global: The load is assumed in global coordination system

• CoordinationSystem.Local: The load is assumed in local coordination system of element that load is
applied to (each element type have different local coordination system which is stated in appropriated section).

Example 1: Linear Varying load

For load shown in the image:

first need to calculate isoparametric coords of locations (see see Iso Parametric Coordination System Of Elements
Example section for more info)

‘‘ var load = new PartialNonUniformLoad(); //creating new instance of load load.SeverityFunction =
Mathh.SingleVariablePolynomial.FromPoints(-1/3, 2000, 2/3, 1000); //this is a totally linear load, defined from two
points. since it is partial, need to tell bfe the span this load is applied

load.StartLocation = new IsoPoint(-1/3); //set locations of trapezoidal load load.EndLocation = new IsoPoint(2/3);
//set locations of trapezoidal load ‘‘

ElementLoad is a base class that can only apply on the Element. There are several ‘‘ElementLoad‘‘s:

3.1. Elemental Loads 25

BriefFiniteElement.NET Documentation, Release stable

• UniformLoad: A uniform load that can apply on a Element or one of its faces or edges.

• PartialNonuniformLoad: A Partial varying load.

• ConcentratedLoad: A concentratel load that applies on a single point in Element’s body

3.2 Nodal Loads

TODO: overview of what are nodal loads.

There are two types of load in general: NodalLoad and ElementLoad. NodalLoad does apply on nodes and only have
concentrated load, but ElementLoad is abstract base class and does apply on elements instead of nodes. Image can
shows the difference better:

All loads (including nodal and elemental) have LoadCase. See LoadCase and combinations for more info.

26 Chapter 3. Loads Available

CHAPTER 4

Materials Available

4.1 UniformIsotropicMaterial

4.1.1 Overview

inherited from BaseMaterial, this represents a unifrom and isotropic material:

• uniform means material properties are not varying throught the element’s body, or in every location of element
material properties are identical.

• isotropic means having identical values of a property in all directions

4.1.2 YoungModulus

UniformIsotropicMaterial.YoungModulus represents a value defining the Young’s Modulus (aka. elastic
modulus). The dimension is standard SI unit [Pas].

4.1.3 PoissonRatio

UniformIsotropicMaterial.PoissonRatio represents a value defining the Poisson’s ratio. Poisson?s ratio
is Dimensionless and has no SI unit.

4.1.4 Mass Density

UniformIsotropicMaterial.Rho represents a value defining the Mass density. The dimension is standard SI
unit [kg/m^3].

27

https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Poisson%27s_ratio
https://en.wikipedia.org/wiki/Mass_Density

BriefFiniteElement.NET Documentation, Release stable

4.1.5 Damp Density

UniformIsotropicMaterial.Mu represents a value defining the Damp density. The dimension is standard SI
unit [TODO].

4.1.6 static CreateFromYoungPoisson()

Creates a new instance of UniformIsotropicMaterial using Young’s Modulus and Poisson’s Ratio.

Example

Create steel material with:

• Young’s Modulus = 210 [GPa]

• Poisson’s Ratio = 0.3

var e = 210e9;//210 gpa
var nu = 0.3;

var steelMat = UniformIsotropicMaterial.CreateFromYoungPoisson(e, nu);

4.1.7 static CreateFromYoungShear()

Creates a new instance of UniformIsotropicMaterial using Young’s Modulus and Shear Modulus. Poisson’s
ratio is calculated based on this formula: G = E / (2*(1-nu)) then: nu = e/(2*G) - 1

Example

Create steel material with:

• Young’s Modulus = 210 [GPa]

• Shear Modulus = 79 [GPa]

var e = 210e9;//210 gpa
var g = 79e9;//79 gpa

var steelMat = UniformIsotropicMaterial.CreateFromYoungShear(e, g);

4.1.8 static CreateFromShearPoisson()

Creates a new instance of UniformIsotropicMaterial using Shear Modulus and Poisson’s Ratio. Elastic
modulus is calculated based on this formula: G = E / (2*(1-nu)) then: E = G * (2*(1-nu))

Example

Create steel material with:

• Shear Modulus = 79 [GPa]

• Poisson’s Ratio = 0.3

28 Chapter 4. Materials Available

https://en.wikipedia.org/wiki/Damp_Density

BriefFiniteElement.NET Documentation, Release stable

var g = 79e9;//79 gpa
var nu = 0.3;

var steelMat = UniformIsotropicMaterial.CreateFromShearPoisson(g, nu);

4.2 UniformAnisotropicMaterial

4.2.1 Overview

inherited from BaseMaterial, this represents a unifrom and anisotropic material:

• uniform means material properties are not varying throught the element’s body, or in every location of element
material properties are identical.

• anisotropic means having different mechanical properties in different directions

4.2.2 Properties

There are 9 properties with this class:

• Ex: Young’s Modulus in element’s local X direction

• Ey: Young’s Modulus in element’s local Y direction

• Ez: Young’s Modulus in element’s local Z direction

• NuXy, NuYx: Poisson’s Ratio

• NuYz, NuZy: Poisson’s Ratio

• NuZx, NuXz: Poisson’s Ratio

Material defines the mechanical properties of elements. Materials all are inherited from BaseMaterial.

4.2. UniformAnisotropicMaterial 29

BriefFiniteElement.NET Documentation, Release stable

30 Chapter 4. Materials Available

CHAPTER 5

Getting Started

5.1 Download source code of BriefFiniteElement.NET library

To download the source code there are three ways:

1. Use git client

2. Direct download source code

First way (using git client) is suggested as you have more control over source code and can keep source code sync
with the latest source code on [github.com](https;//www.github.com).

5.1.1 Using Git Client to Download the Source Code

We will use git for windows client over download the code. download and install client from [this link](https://
gitforwindows.org/). After installation open the git-gui from either installed location or start menu:

Then click the “Clone Existing Repository” on the main window:

in next window, on the source location insert the git location of source code, this address is available at project main
page on github.gom:

by the way currently it is: https://github.com/BriefFiniteElementNet/BFE.Net.git paste it into
source location.

in destination location type the folder you want the source code be downloaded into, note that this folder will be
created with git client and should not exists, and finally click clone:

then wait until download finishes. Only note that use latest version of git client. after download finished, the git GUI
will show up. close it and check the destination folder, there should be plenty of files there:

5.1.2 Direct download source code

From project main page in github.com click clone or download button then click download zip:

31

https://gitforwindows.org/
https://gitforwindows.org/

BriefFiniteElement.NET Documentation, Release stable

32 Chapter 5. Getting Started

BriefFiniteElement.NET Documentation, Release stable

5.1. Download source code of BriefFiniteElement.NET library 33

BriefFiniteElement.NET Documentation, Release stable

5.2 Create a project and compile BRiefFiniteElement from source
code

After downloading the source code you should reference the main projects of bfe in your C# project. we will use Visual
Studio 2015 in next. you can use any version of Visual Studio IDE including free express or community version. by the
way it is downloadable from https://visualstudio.microsoft.com/. In next we will use visual Studio
2015. . .

Some users reported project does not build with Visual Studio 2017, there are some workarounds in (‘issue #42 on
project on github<https://github.com/BriefFiniteElementNet/BriefFiniteElement.Net/issues/42>‘_).

5.2.1 Creating new project

After installation, Create a new C# application with name BfeTestApplication and type Console
Application (More Info).

5.2.2 Add BFE codes (projects) into solution

You should add the actual BFE core codes into your solution. (More Info).

To add BFE code to your solution, do the following:

1- In Solution Explorer, select the solution.

2- On the File menu, point to Add, and click Existing Project.

3- In the Add Existing Project dialog box, locate the project you want to add, select the project file, and then click
Open.

you should add two projects to your solution:

1- BriefFiniteElementNet located at <root folder>\BriefFiniteElementNet\BriefFiniteElementNet.
csproj

2- BriefFiniteElementNet.Common located at <root folder>\BriefFiniteElementNet.
Common\BriefFiniteElementNet.Common.csproj

adding two projects,

34 Chapter 5. Getting Started

https://docs.microsoft.com/en-us/visualstudio/ide/creating-solutions-and-projects?view=vs-2017
https://docs.microsoft.com/en-us/sql/ssms/solution/add-an-existing-project-to-a-solution?view=sql-server-2017

BriefFiniteElement.NET Documentation, Release stable

5.2. Create a project and compile BRiefFiniteElement from source code 35

BriefFiniteElement.NET Documentation, Release stable

36 Chapter 5. Getting Started

BriefFiniteElement.NET Documentation, Release stable

5.2. Create a project and compile BRiefFiniteElement from source code 37

BriefFiniteElement.NET Documentation, Release stable

after adding two projects, solution explorer tab in visual studio should looks like this:

5.2.3 Add reference of BFE projects into first project

Now two C# projects BriefFiniteElementNet and BriefFiniteElementNet.Common are added to our
solution. next we should add a reference of each one into first project named BfeTestApplication (More Info).

5.2.4 Start Coding with BFE

Now things are ready to start coding. Open the Program.cs file in project BfeTestApplication inside Visual
Studio, it should be something like this:

The static void Main(string[] args) method will execute once we start to execute the project. so we
should add our code inside it:

//a console beam, totally fixed in start n1, totally free in end n2
// a load of 1000 N
var model = new BriefFiniteElementNet.Model();

Node n1, n2;

model.Nodes.Add(n1 = new Node(x:0.0, y:0.0, z:0.0) { Constraints = Constraints.Fixed }
→˓);
model.Nodes.Add(n2 = new Node(x:1.0, y:0.0, z:0.0) { Constraints = Constraints.
→˓Released });

(continues on next page)

38 Chapter 5. Getting Started

https://msdn.microsoft.com/en-us/library/wkze6zky.aspx

BriefFiniteElement.NET Documentation, Release stable

5.2. Create a project and compile BRiefFiniteElement from source code 39

BriefFiniteElement.NET Documentation, Release stable

40 Chapter 5. Getting Started

BriefFiniteElement.NET Documentation, Release stable

5.2. Create a project and compile BRiefFiniteElement from source code 41

BriefFiniteElement.NET Documentation, Release stable

(continued from previous page)

var elm = new BarElement(n1, n2);

model.Elements.Add(elm);

elm.Section = new BriefFiniteElementNet.Sections.UniformParametric1DSection(a: 0.01,
→˓iy: 8.3e-6, iz: 8.3e-6, j: 16.6e-6);//section's second area moments Iy and Iz = 8.
→˓3*10^-6, area = 0.01
elm.Material = BriefFiniteElementNet.Materials.UniformIsotropicMaterial.
→˓CreateFromYoungPoisson(210e9, 0.3);//Elastic mudule is 210e9 and poisson ratio is 0.
→˓3

var load = new BriefFiniteElementNet.NodalLoad();
var frc = new Force();
frc.Fz = 1000;// 1kN force in Z direction
load.Force = frc;

n2.Loads.Add(load);

model.Solve_MPC();//or model.Solve();

var d2 = n2.GetNodalDisplacement();

Console.WriteLine("Nodal displacement in Z direction is {0} meters (thus {1} mm)", d2.
→˓DZ, d2.DZ * 1000);//print the Dz of n2 into console
Console.WriteLine("Nodal rotation in Y direction is {0} radians (thus {1} degrees)",
→˓d2.RY, d2.RY * 180.0 / Math.PI);//print the Rz of n2 into console

Console.WriteLine("Press any key to continue");
Console.ReadKey();

also add two using directives on top of file:

using BriefFiniteElementNet;
using BriefFiniteElementNet.Elements;

finally it should look like:

Then we start debug by pressign F5 key or “Debug” menu, then “Start Debugging”. console window should show up
like this:

5.3 Install BFE.NET Nuget Library

Install-Package BriefFiniteElement.NET

This section is about getting started to use BFE.NET.

42 Chapter 5. Getting Started

BriefFiniteElement.NET Documentation, Release stable

5.3. Install BFE.NET Nuget Library 43

BriefFiniteElement.NET Documentation, Release stable

44 Chapter 5. Getting Started

CHAPTER 6

Examples

6.1 Small 3D Truss Example

In this example, I want to analyse a simple truss with 4 members as shown in figure.

All members sections are the same, a square steel section with dimension of 3 cm. So the properties of members will
be:

The area of SECTION:

A = 0.03m * 0.03m = 9 * 10^-4 m^2

The Elastic or Young Modulus of MATERIAL:

E = 210 GPa = 210*10^9 Pa = 210*10^9 N/M^2

The Poison Ratio of MATERIAL:

? = 0.3

Please note that for truss memeber usually Poison ratio is not taken into account anywhere in calculation, so settings it
to any value in (0,0.5) range will not change any part of the result, but setting to zero maybe cause some problem!
so better to assume a usual value of 0.3 for it.

We should do these steps before we solve the model:

• Step1: Create Model, Members and Nodes.

• Step2: Add the Nodes and Elements to Model.

• Step3: Assign geometrical and mechanical properties to Elements.

• Step4: Assign Constraints to Nodes (fix the DoF s).

• Step5: Assign Load to Node.

And finally solve model with Model.Solve() method and then extract analysis results like support reactions or member
internal forces or nodal deflections.

45

https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Poisson%27s_ratio

BriefFiniteElement.NET Documentation, Release stable

46 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

6.1.1 Step1: Create Model, Members and Nodes

We should create a Finite Element model first and then add members and nodes to it:

// Initiating Model, Nodes and Members
var model = new Model();

Creating Nodes

We should create nodes like this. In BriefFiniteElement.NET, every node and element have a property of type string
named Label and another one named Tag both of which are inherited from BriefFiniteElementNet.StructurePart. In
every Model, Label of every member should be unique among all members (both Nodes and Elements) unless the
Label be equal to null which is by default. In the below code, we are creating 5 nodes of truss and assigning a unique
Label to each one.

var n1 = new Node(1, 1, 0);
n1.Label = "n1";//Set a unique label for node
var n2 = new Node(-1, 1, 0) {Label = "n2"};//using object initializer for assigning
→˓Label
var n3 = new Node(1, -1, 0) {Label = "n3"};
var n4 = new Node(-1, -1, 0) {Label = "n4"};
var n5 = new Node(0, 0, 1) {Label = "n5"};

Creating Elements

Next we have to create the elements. In BriefFiniteElement.NET, the TrussElement and BarElement classes do repre-
sents a truss element in 3D. As TrussElement is old and obsolete, we use BarElement:

var e1 = new BarElement(n1, n5) { Label = "e1", Behavior = BarElementBehaviours.Truss
→˓};
var e2 = new BarElement(n2, n5) {Label = "e2", Behavior = BarElementBehaviours.Truss }
→˓;
var e3 = new BarElement(n3, n5) {Label = "e3", Behavior = BarElementBehaviours.Truss }
→˓;
var e4 = new BarElement(n4, n5) { Label = "e4", Behavior = BarElementBehaviours.Truss
→˓};

note that BarElement can be used as a frame too, so you should set the BarElement.Behavior to BarElementBe-
haviours.Truss in order to make it a truss member, else you will have a frame member instead of truss!

6.1.2 Step2: Add the Nodes and Elements to Model.

You can simply add the elements and nodes we created into the Model. Model has two members Model.Elements
and Model.Nodes which both represents an IList<T> of nodes and members, plus an Add() method that accept
several items:

model.Nodes.Add(n1, n2, n3, n4, n5);
model.Elements.Add(e1, e2, e3, e4);

Please note that if Node or Element?s Label property is something else than null, then it should be unique among all
nodes and elements, else you will receive an error when adding member with duplicated label into model.

6.1. Small 3D Truss Example 47

BriefFiniteElement.NET Documentation, Release stable

6.1.3 Step3: Assign geometrical and mechanical properties to Elements

As elastic module for all members equals to 210 GPa and area of all members equals to 0.0009 m^2 we can set the
element properties like this:

e1.Section = new Sections.UniformParametric1DSection() { A = 9e-4 };
e2.Section = new Sections.UniformParametric1DSection() { A = 9e-4 };
e3.Section = new Sections.UniformParametric1DSection() { A = 9e-4 };
e4.Section = new Sections.UniformParametric1DSection() { A = 9e-4 };

e1.Material = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);
e2.Material = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);
e3.Material = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);
e4.Material = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);

6.1.4 Step4: Assign Constraints to Nodes (fix the DoF s)

Now, we should make some DoFs of structure fix in order to make analysis logically possible.

In BriefFiniteElement.NET, every node has 6 degree of freedom: X, Y, and Z rotations and X, Y, and Z translations.
For a every truss model, we have to fix rotational DoFs for each Node (X,Y and Z rotation). Also the nodes 1
to 4 are also movement fixed, then nodes 1 to 4 should be totally fixed and node 5 should be rotation fixed. In
BriefFiniteElement.NET, a struct named Constraint represents a constraint that is applicable to a 6 DoF node, it have
Dx, Dy, Dz, Rx, Ry and Rz properties of type DofConstraint which is an enum and have two possible values 0
(Released) and 1 (Fixed). For making work easier, the Constraint struct has some predefined Constraints in its static
properties for example Constraint.Fixed or Constraint.Free. Here is more detailed information:

Property Name Description
Constraints.Fixed All 6 DoFs are fixed
Constraints.Released All 6 DoFs are released
Constraints.MovementFixed 3 translation DoFs are fixed and 3 rotation DoFs are re-

leased
Constraints.RotationFixed 3 translation DoFs are released and 3 rotation DoFs are

fixed

We can fix DoFs of nodes 1 to 4 like this:

n1.Constraints = n2.Constraints = n3.Constraints = n4.Constraints = new
→˓Constraint(dx:DofConstraint.Fixed, dy:DofConstraint.Fixed, dz:DofConstraint.Fixed,
→˓rx:DofConstraint.Fixed, ry:DofConstraint.Fixed, rz:DofConstraint.Fixed);

or:

n1.Constraints = n2.Constraints = n3.Constraints = n4.Constraints = Constraints.Fixed

and should fix the rotational DoFs of node 5:

6.1.5 Step5: Assign Load to Node

In BriefFiniteElement.NET, there is a struct named Force which represent a concentrated force in 3D space which
contains of 3 force components in X, Y and Z directions and three moment components in X, Y and Z directions. It
have 6 double properties named Fx, Fy, Fz, Mx, My and Mz that are representing the load components. There are also
two properties of type Vector for this struct named Forces and Moments. On setting or getting, they will use the Fx,
Fy, Fz, Mx, My and Mz to perform operations:

48 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

/// <summary>
/// Gets or sets the forces.
/// </summary>
/// <value>
/// The forces as a <see cref="Vector"/>.
/// </value>
public Vector Forces
{

get
{

return new Vector(fx,fy,fz);
}

set
{

this.fx = value.X;
this.fy = value.Y;
this.fz = value.Z;

}
}

Same is with Moments property. The Forces and Moments property do not actually store values in something other
than 6 obvious properties.

As LoadCase and LoadCombination concepts are supported in BriefFiniteElement.NET, every Load should have a
LoadCase. A LoadCase is simply a struct that has two properties: CaseName with string type and LoadType with
LoadType type which is an enum and has some possible values:

public enum LoadType
{

Default = 0,
Dead,
Live,
Snow,
Wind,
Quake,
Crane,
Other

}

The LoadType.Default is a load type that is created for built in usage in library and it do not meant to have meaning
like Dead, Live, etc. The LoadCase struct has a static property named LoadCase.DefaultLoadCase:

/// <summary>
/// Gets the default load case.
/// </summary>
/// <value>
/// The default load case.
/// </value>
/// <remarks>
/// Gets a LoadCase with <see cref="LoadType"/> of <see cref="BriefFiniteElementNet.
→˓LoadType.Default"/> and empty <see cref="CaseName"/></remarks>
public static LoadCase DefaultLoadCase
{

get { return new LoadCase(); }
}

Which represents a LoadCase with LoadType of Default and CaseName of null. We will call such a LoadCase as

6.1. Small 3D Truss Example 49

BriefFiniteElement.NET Documentation, Release stable

DefaultLoadCase. For simplicity of usage in BriefFiniteElement.NET everywhere that you?ll prompt for a LoadCase,
if you do not provide a LoadCase then the LoadCase is assumed DefualtLoadCase by the library. For example, when
you want to assign a load to a node, you should provide a LoadCase for it, like this:

var load = new NodalLoad(new Force(0, 0, -1000, 0, 0, 0), new LoadCase("Case1",
→˓LoadType.Dead));

but if you do not provide the LoadCase in the above code like this:

var load = new NodalLoad(new Force(0, 0, -1000, 0, 0, 0));

then the load case will be assumed DefaultLoadCase by the library.

Ok, next we have to add 1KN load to node 5 like this, will do it with DefaultLoadCase:

var force = new Force(0, 0, -1000, 0, 0, 0);
n5.Loads.Add(new NodalLoad(force));//adds a load with LoadCase of DefaultLoadCase to
→˓node loads

And finally solve the model with model.Solve() method. Actually solving the model is done in two stages:

• First stage is creating stiffness matrix and factorizing stiffness matrix which will take majority of time for
analysing

• Second phase is analysing structure against each load case which takes much less time against first stage (say
for example 13 sec for first stage and 0.5 sec for second stage).

First stage is done in model.Solve() method and second stage will done if they?ll be need to.

There are loads with different LoadCases that are applied to the Nodes and Elements. So the
Node.GetSupportReaction() method have an overload which gets a LoadCombination and returns the sup-
port reactions based on the load combination. LoadCombination has a static property named LoadCombina-
tion.DefaultLoadCombination which has only one LoadCase in it (the DefaultLoadCase) with factor of 1.0. also
everywhere that you should provide a LoadCombination, if you do not provide any, then DefaultLoadCombination
will be considered by library. I?ve used DefaultLoadCase and DefaultLoadCombination in library to make working
with library easier for people who are not familiar with load case and load combination stuff.

For getting the support reaction for the truss, we can simply call Node.GetSupportReaction() to get support reaction
for every node:

Force r1 = n1.GetSupportReaction();
Force r2 = n2.GetSupportReaction();
Force r3 = n3.GetSupportReaction();
Force r4 = n4.GetSupportReaction();

The plus operator is overloaded for Force struct, so we can check the sum of support reactions:

Force rt = r1 + r2 + r3 + r4;//shows the Fz=1000 and Fx=Fy=Mx=My=Mz=0.0

The forces (Fx, Fy and Fz) amount should be equal to sum of external loads and direction should be opposite to
external loads to satisfy the structure static equilibrium equations.

6.1.6 All Codes Together

This is all codes above for truss example.

Please note that these codes are available in BriefFiniteElementNet.CodeProjectExamples project in
library solution.

50 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

private static void Example1()
{

Console.WriteLine("Example 1: Simple 3D truss with four members");

// Initiating Model, Nodes and Members
var model = new Model();

var n1 = new Node(1, 1, 0);
n1.Label = "n1";//Set a unique label for node
var n2 = new Node(-1, 1, 0) {Label = "n2"};//using object initializer for

→˓assigning Label
var n3 = new Node(1, -1, 0) {Label = "n3"};
var n4 = new Node(-1, -1, 0) {Label = "n4"};
var n5 = new Node(0, 0, 1) {Label = "n5"};

var e1 = new TrussElement2Node(n1, n5) {Label = "e1"};
var e2 = new TrussElement2Node(n2, n5) {Label = "e2"};
var e3 = new TrussElement2Node(n3, n5) {Label = "e3"};
var e4 = new TrussElement2Node(n4, n5) {Label = "e4"};
//Note: labels for all members should be unique, else you will receive

→˓InvalidLabelException when adding it to model

e1.A = e2.A = e3.A = e4.A = 9e-4;
e1.E = e2.E = e3.E = e4.E = 210e9;

model.Nodes.Add(n1, n2, n3, n4, n5);
model.Elements.Add(e1, e2, e3, e4);

//Applying restrains

n1.Constraints = n2.Constraints = n3.Constraints = n4.Constraints =
→˓Constraint.Fixed;

n5.Constraints = Constraint.RotationFixed;

//Applying load
var force = new Force(0, 1000, -1000, 0, 0, 0);
n5.Loads.Add(new NodalLoad(force));//adds a load with LoadCase of

→˓DefaultLoadCase to node loads

//Adds a NodalLoad with Default LoadCase

model.Solve();

var r1 = n1.GetSupportReaction();
var r2 = n2.GetSupportReaction();
var r3 = n3.GetSupportReaction();
var r4 = n4.GetSupportReaction();

var rt = r1 + r2 + r3 + r4;//shows the Fz=1000 and Fx=Fy=Mx=My=Mz=0.0

Console.WriteLine("Total reactions SUM :" + rt.ToString());
}

console result after executing:

6.1. Small 3D Truss Example 51

BriefFiniteElement.NET Documentation, Release stable

Console Output

Example 1: Simple 3D truss with four members

Total reactions SUM :F: 0, 0, 1000, M: 0, 0, 0

6.2 LoadCase and LoadCombination Example

In Finite Element, there is a thing named Force or Load. Also there are

There are two concepts named LoadCase and LoadCombination in this library and many other softwares. A
`LoadCase` defines the group of loads. For example, in structure below there is a “dead” load and a “live” load,
and two “earthquake” loads, in X and Y direction on n4 node:

Fig. 1: Model with 4 type of load

The LoadCase struct have a nature property (an enum type) and a title property (with string type). LoadNature can be:
Default, Dead, Live, Snow, Wind, Quake, Crane and Other.

So there can be 4 LoadCases for this example:

• case 1: Nature = Dead, Title = “D1”

• case 2: Nature = Live, Title = “L1”

• case 3: Nature = Quake, Title = “Qx”

• case 4: Nature = Quake, Title = “Qy”

52 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

We will do these steps before solving model:

• Step1: Create Model, prepair and add Elements and Nodes

• Step2: Assign Constraints to Nodes (fix the DoF s).

• Step3: Assign Load to Node.

6.2.1 Step1: Create Model, prepair and add Elements and Nodes

To make the model, elements and loads:

//source code file: LoadCombExample.cs, project: BriefFiniteElementNet.
→˓CodeProjectExamples

var model = new Model();

model.Nodes.Add(new Node(0, 0, 0) { Label = "n0" });
model.Nodes.Add(new Node(0, 2, 0) { Label = "n1" });
model.Nodes.Add(new Node(4, 2, 0) { Label = "n2" });
model.Nodes.Add(new Node(4, 0, 0) { Label = "n3" });

model.Nodes.Add(new Node(0, 0, 1) { Label = "n4" });
model.Nodes.Add(new Node(0, 2, 1) { Label = "n5" });
model.Nodes.Add(new Node(4, 2, 1) { Label = "n6" });
model.Nodes.Add(new Node(4, 0, 1) { Label = "n7" });

var a = 0.1 * 0.1;//area, assume sections are 10cm*10cm rectangular
var iy = 0.1 * 0.1 * 0.1 * 0.1 / 12.0;//Iy
var iz = 0.1 * 0.1 * 0.1 * 0.1 / 12.0;//Iz
var j = 0.1 * 0.1 * 0.1 * 0.1 / 12.0;//Polar
var e = 20e9;//young modulus, 20 [GPa]
var nu = 0.2;//poissons ratio

var sec = new Sections.UniformParametric1DSection(a, iy, iz, j);
var mat = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(e, nu);

model.Elements.Add(new BarElement(model.Nodes["n0"], model.Nodes["n4"]) { Label = "e0
→˓", Section = sec, Material = mat});
model.Elements.Add(new BarElement(model.Nodes["n1"], model.Nodes["n5"]) { Label = "e1
→˓", Section = sec, Material = mat });
model.Elements.Add(new BarElement(model.Nodes["n2"], model.Nodes["n6"]) { Label = "e2
→˓", Section = sec, Material = mat });
model.Elements.Add(new BarElement(model.Nodes["n3"], model.Nodes["n7"]) { Label = "e3
→˓", Section = sec, Material = mat });

model.Elements.Add(new BarElement(model.Nodes["n4"], model.Nodes["n5"]) { Label = "e4
→˓", Section = sec, Material = mat });
model.Elements.Add(new BarElement(model.Nodes["n5"], model.Nodes["n6"]) { Label = "e5
→˓", Section = sec, Material = mat });
model.Elements.Add(new BarElement(model.Nodes["n6"], model.Nodes["n7"]) { Label = "e6
→˓", Section = sec, Material = mat });
model.Elements.Add(new BarElement(model.Nodes["n7"], model.Nodes["n4"]) { Label = "e7
→˓", Section = sec, Material = mat });

6.2. LoadCase and LoadCombination Example 53

BriefFiniteElement.NET Documentation, Release stable

6.2.2 Step2: Assign Constraints to Nodes (fix the DoF s)

model.Nodes["n0"].Constraints =
model.Nodes["n1"].Constraints =
model.Nodes["n2"].Constraints =

model.Nodes["n3"].Constraints =
Constraints.Fixed;

6.2.3 Step3: Assign load to nodes

This is main purpose of this example, the LoadCase and LoadCombination types. In framework every Load does have
a property named LoadCase. this LoadCase property will help us to distribute all Loads into groups. We want to do
this because we should solve the model for each LoadCase separately. In this example we will create 4 load cases:

1. a load case with name d1 and load type of dead for dead loads on top horizontal elements

2. a load case with name l1 and load type of live for live loads on top horizontal elements

3. a load case with name qx and load type of quake for 5kN concentrated force applied to n4 node

4. a load case with name qy and load type of quake for 10kN concentrated force applied to n4 node

var d_case = new LoadCase("d1", LoadType.Dead);
var l_case = new LoadCase("l1", LoadType.Dead);
var qx_case = new LoadCase("qx", LoadType.Quake);
var qy_case = new LoadCase("qy", LoadType.Quake);

Then we should create two distributed loads for top beams:

var d1 = new Loads.UniformLoad(d_case, -1 * Vector.K, 2e3, CoordinationSystem.Global);
var l1 = new Loads.UniformLoad(l_case, -1 * Vector.K, 1e3, CoordinationSystem.Global);

var qx_f = new Force(5000 * Vector.I, Vector.Zero);
var qy_f = new Force(10000 * Vector.J, Vector.Zero);

note that we’ve set the load case of these two loads by passing d_case and l_case into constructor of Loads.
UniformLoad class.

Next we will add d1 and l1 and two other nodal lo loads to all top elements. you should note that adding same load
to more that one element is possible and will work like creating identical loads for each element.

model.Elements["e4"].Loads.Add(d1);
model.Elements["e5"].Loads.Add(d1);
model.Elements["e6"].Loads.Add(d1);
model.Elements["e7"].Loads.Add(d1);

model.Elements["e4"].Loads.Add(l1);
model.Elements["e5"].Loads.Add(l1);
model.Elements["e6"].Loads.Add(l1);
model.Elements["e7"].Loads.Add(l1);

model.Nodes["n4"].Loads.Add(new NodalLoad(qx_f, qx_case));
model.Nodes["n4"].Loads.Add(new NodalLoad(qy_f, qy_case));

model.Solve_MPC();//no different with Model.Solve()

as said before, all loads in BFE should inherit from NodalLoad or ElementLoad. Both of these loads have a property
named LoadCase property of type `LoadCase`. So every load in BFE will have the LoadCase property. In other

54 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

hand to get analysis result of model - like internal force on elements, or nodal displacements or support reactions - a
parameter of type LoadCombination should pass to the appropriated method. For example to get internal force of bar
element, this method should be called:

BarElement.GetInternalForceAt(double x, LoadCombination combination);

Or to get support reaction of a node, this method should be used:

Node.GetSupportReaction(LoadCombination combination);

A `LoadCombination` in a list of LoadCases with a multiplier for each one. Internally it does uses
`Dictionary<LoadCase,double>` to keep the list. For example if want to find support reaction for node
n3 with loadCombination D + 0.8 L:

var combination1 = new LoadCombination();// for D + 0.8 L
combination1[d_case] = 1.0;
combination1[l_case] = 0.8;

var n3Force = model.Nodes["N3"].GetSupportReaction(combination1);
Console.WriteLine(n3Force);

or for finding internal force of e4 element with combination D + 0.8 L at it’s centre:

var e4Force = (model.Elements["e4"] as BarElement).GetInternalForceAt(0,
→˓combination1);
Console.WriteLine(e4Force);or ds

6.3 Iso Parametric Coordination System Of Elements Example

Apart from local and global coordination systems for elements, there is another system based on isoparametric formu-
lation/representation, which is used extensively in finite element method. In BFE also in many places instead of local
coordinate system, the iso parametric coordination is used.

6.3.1 Iso Parametric Coordination system for BarElement with two nodes

Based on

At the beginning point of the element, where x=0 the iso parametric coordinate is 𝜉=-1

At the central point of the element, where x=L/2, and L is length of elements, the iso parametric coordinate is 𝜉=0

At the end point of the element, where x=L, and L is length of elements, the iso parametric coordinate is 𝜉=1

In bar element with two nodes the relation between isoparamtric 𝜉 coordinate and local x coordinate is:

x = (𝜉 + 1)*L/2 and subsequently

6.3. Iso Parametric Coordination System Of Elements Example 55

BriefFiniteElement.NET Documentation, Release stable

𝜉 = (2*x-L)/L

6.4 Inclined Frame Example

Consider the inclined frame shown in fig below.

There are two loads on top elements. One has a 6 kn/m magitude and its direction is vertical, another one has 5kn/m
magnitude and it is perpendicular to the e2 element.

step 1: create model, nodes and elements:

var model = new Model();

model.Nodes.Add(new Node(-10, 0, 0) { Label = "n0" });
model.Nodes.Add(new Node(-10, 0, 6) { Label = "n1" });
model.Nodes.Add(new Node(0, 0, 8) { Label = "n2" });
model.Nodes.Add(new Node(10, 0, 6) { Label = "n3" });
model.Nodes.Add(new Node(10, 0, 0) { Label = "n4" });

model.Elements.Add(new BarElement(model.Nodes["n0"], model.Nodes["n1"]) { Label = "e0
→˓"});
model.Elements.Add(new BarElement(model.Nodes["n1"], model.Nodes["n2"]) { Label = "e1
→˓"});
model.Elements.Add(new BarElement(model.Nodes["n2"], model.Nodes["n3"]) { Label = "e2
→˓" });
model.Elements.Add(new BarElement(model.Nodes["n3"], model.Nodes["n4"]) { Label = "e3
→˓" });

56 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

step 2: define support nodes (nodal constraints)

model.Nodes["n0"].Constraints = model.Nodes["n4"].Constraints = Constraints.Fixed;

step 3: assign material and section to the elements

var secAA = new Sections.UniformGeometric1DSection(SectionGenerator.GetISetion(0.24,
→˓0.67, 0.01, 0.006));
var secBB = new Sections.UniformGeometric1DSection(SectionGenerator.GetISetion(0.24,
→˓0.52, 0.01, 0.006));
var mat = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);

(model.Elements["e0"] as BarElement).Material = mat;
(model.Elements["e1"] as BarElement).Material = mat;
(model.Elements["e2"] as BarElement).Material = mat;
(model.Elements["e3"] as BarElement).Material = mat;

(model.Elements["e0"] as BarElement).Section = secAA;
(model.Elements["e1"] as BarElement).Section = secBB;
(model.Elements["e2"] as BarElement).Section = secBB;
(model.Elements["e3"] as BarElement).Section = secAA;

step 4: assign loads to elements

var u1 = new Loads.UniformLoad(LoadCase.DefaultLoadCase, new Vector(0,0,1), -6000,
→˓CoordinationSystem.Global);
var u2 = new Loads.UniformLoad(LoadCase.DefaultLoadCase, new Vector(0,0,1), -5000,
→˓CoordinationSystem.Local);

model.Elements["e1"].Loads.Add(u1);
model.Elements["e2"].Loads.Add(u2);

step 5: analyse the model

model.Solve_MPC();

step 6: get analysis results

Usually aim of analysis is to find some quantities like internal force and nodal displacements. After solving the
model we can find nodal displacements with Node.GetNodalDisplacement, and BarElement’s internal force with
BarELement.GetInternalForceAt and BarElement.GetExactInternalForceAt methods. There
is a difference between the two methods. Details are available in Internal Force And Displacement section in docu-
mentation of BarElement.

for example the support reaction of node N3 can be found and printed to application Console like this:

var n3Force = model.Nodes["N3"].GetSupportReaction();
Console.WriteLine("Support reaction of n4: {0}", n3Force);

This is the result of print on console:

Support reaction of n4: F: -37514.9891729259, 0, 51261.532772234, M: 0, -97714.6039503916, 0

Element’s internal force can be found like this: For example need to find internal force of element in a point with
distance of 1m (one meter) of start node. We can use BarElement.GetInternalForceAt() method to simply get the
internal force of element at desired location of length of element, but there is an important thing here: and that is the
input of BarElement.GetInternalForceAt() method is not in meter dimension not any other standard units of measuring
length. The input is in another coordination system named iso-parametric crs. The isoparametric crs is widely used in
FEM. More details about BarElement does have a method for converting

6.4. Inclined Frame Example 57

BriefFiniteElement.NET Documentation, Release stable

whole source code exists in the BarIncliendFrameExample.cs file.

6.5 Element Load Coordination System Example

The Loads.UniformLoad have a property named CoordinationSystem of enum type
BriefFiniteElementNet.CoordinationSystem which defines the coordination system of load (for
more info see Coordination System).

Using the combination of UniformLoad.CoordinationSystem and UniformLoad.Direction property,
some specific distributed loads can be applied to elements.

Here are two examples:

6.5.1 Example 1

Consider the inclined frame shown in fig below, under dead load.

There is an inclined element of length = 5 [m], and an UniformLoad of magnitude 1000 [N/m].

• Magnitude of 1000 [N/m]

• Direction of Z

• Coordination System of Global

step 1: create model, nodes and elements:

var m1 = new Model();

var el1 = new BarElement();

el1.Nodes[0] = new Node(0, 0, 0) { Constraints = Constraints.MovementFixed &
→˓Constraints.FixedRX, Label = "n0" };
el1.Nodes[1] = new Node(3, 0, 4) { Constraints = Constraints.MovementFixed, Label =
→˓"n1" };

el1.Section = new Sections.UniformGeometric1DSection(SectionGenerator.GetISetion(0.24,
→˓ 0.67, 0.01, 0.006));
el1.Material = UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);

var l1 = new Loads.UniformLoad();

l1.Direction = Vector.K;
l1.CoordinationSystem = CoordinationSystem.Global;
l1.Magnitude = 1e3;

el1.Loads.Add(l1);

m1.Elements.Add(el1);
m1.Nodes.Add(el1.Nodes);

m1.Solve_MPC();

Console.WriteLine("n0 reaction: {0}", m1.Nodes[0].GetSupportReaction());
Console.WriteLine("n1 reaction: {0}", m1.Nodes[0].GetSupportReaction());

58 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

6.5. Element Load Coordination System Example 59

BriefFiniteElement.NET Documentation, Release stable

result

n0 reaction: F: 0, 0, -2500, M: 0, 0, 0 n1 reaction: F: 0, 0, -2500, M: 0, 0, 0

6.5.2 Example 2

Consider the inclined frame shown in fig below, under wind load.

There is an inclined element of length = 5 [m], and an UniformLoad of magnitude 1000 [N/m].

• Magnitude of 1000 [N/m]

• Direction of Z

• Coordination System of Local

var m1 = new Model();

var el1 = new BarElement();

(continues on next page)

60 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

(continued from previous page)

el1.Nodes[0] = new Node(0, 0, 0) { Constraints = Constraints.MovementFixed &
→˓Constraints.FixedRX, Label = "n0" };
el1.Nodes[1] = new Node(3, 0, 4) { Constraints = Constraints.MovementFixed, Label =
→˓"n1" };

el1.Section = new Sections.UniformGeometric1DSection(SectionGenerator.GetISetion(0.24,
→˓ 0.67, 0.01, 0.006));
el1.Material = UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);

var l1 = new Loads.UniformLoad();

l1.Direction = Vector.K;
l1.CoordinationSystem = CoordinationSystem.Local;
l1.Magnitude = 1e3;

el1.Loads.Add(l1);

m1.Elements.Add(el1);
m1.Nodes.Add(el1.Nodes);

m1.Solve_MPC();

Console.WriteLine("n0 reaction: {0}", m1.Nodes[0].GetSupportReaction());
Console.WriteLine("n1 reaction: {0}", m1.Nodes[0].GetSupportReaction());

result

n0 reaction: F: 2000, 0, -1500, M: 0, 0, 0

n1 reaction: F: 2000, 0, -1500, M: 0, 0, 0

6.5.3 Example 3

Consider the inclined frame shown in fig below, under snow load.

• Projected Magnitude of 1000 [N/m]

• Direction of Z

• Coordination System of Global

There is an inclined element of length = 5 [m], and an UniformLoad of magnitude 1000 [N/m] which is
projected. There is a difference about this type of load with two other examples above. For applying such projected
load, first we have to convert it to example 1. Based on toturial in www.learnaboutstructures.com this is the way to
convert:

So in this example we do not need theta value itself, but we need Cos(𝜃) or more precise absolute value of it |Cos(𝜃)|.
Due to elementary trigonometry relations Cos(𝜃)=Sin(90°-𝜃). So instead of |Cos(𝜃)| we can calculate |Sin(𝛼)| where
𝛼 = 90°-𝜃 and 𝛼 equals to angle between load direction and element direction. For finding |Sin(𝛼)| we can use length
of cross product of two unit vectors of element direction and load direction. This coefficient is always a non negative
value and less than or equal to 1.0. If element is horizontal then |Cos(𝜃)| = 1.0 if element is vertical then |Cos(𝜃)| =
0.0.

6.5. Element Load Coordination System Example 61

http://www.learnaboutstructures.com/Determinate-Frame-Analysis

BriefFiniteElement.NET Documentation, Release stable

62 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

Hint: Note that actually two vectors have to angles between them, a bigger one and a smaller one, but absolute value
of cosine of them both are same i.e |Cos(𝜃)| = |Cos(180°-𝜃)|

var m1 = new Model()
var el1 = new BarElement();

el1.Nodes[0] = new Node(0, 0, 0) { Constraints = Constraints.MovementFixed &
→˓Constraints.FixedRX, Label = "n0" };
el1.Nodes[1] = new Node(4, 0, 3) { Constraints = Constraints.MovementFixed, Label =
→˓"n1" };

el1.Section = new Sections.UniformGeometric1DSection(SectionGenerator.GetISetion(0.24,
→˓ 0.67, 0.01, 0.006));
el1.Material = UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.3);

var loadMagnitude = -1e3;
var loadDirection = Vector.K;

var l1 = new Loads.UniformLoad();

var elementDir = el1.Nodes[1].Location - el1.Nodes[0].Location;//or n0 - n1, does not
→˓matter

var absCosTeta = Vector.Cross(elementDir.GetUnit(), loadDirection.GetUnit()).Length;

l1.Direction = loadDirection;
l1.CoordinationSystem = CoordinationSystem.Global;
l1.Magnitude = loadMagnitude * absCosTeta; //magnitude should multiple by reduction
→˓coefficient absCosTeta

el1.Loads.Add(l1);

m1.Elements.Add(el1);
m1.Nodes.Add(el1.Nodes);

(continues on next page)

6.5. Element Load Coordination System Example 63

BriefFiniteElement.NET Documentation, Release stable

(continued from previous page)

m1.Solve_MPC();

Console.WriteLine("n0 reaction: {0}", m1.Nodes[0].GetSupportReaction());
Console.WriteLine("n1 reaction: {0}", m1.Nodes[0].GetSupportReaction());

result

n0 reaction: F: 0, 0, 2000, M: 0, 0, 0 n1 reaction: F: 0, 0, 2000, M: 0, 0, 0

whole source code exists in the UniformLoadCoordSystem.cs file.

6.6 Cantilever Beam (Console Beam) Example

Consider the beam shown in fig below.

TO BE DONE

We need to find out the support reaction on node n0 and internal force of beam at any length x.

Step 1: making model

// Initiating Model, Nodes and Members
var model = new Model();

var n1 = new Node(0, 0, 0);
n1.Label = "n1";//Set a unique label for node
var n2 = new Node(2, 0, 0) {Label = "n2"};//using object initializer for

→˓assigning Label

var e0 = new BarElement(n1, n2) { Label = "e1", Behavior = BarElementBehaviours.
→˓FullFrame };

model.Nodes.Add(n1, n2);
model.Elements.Add(e1);

e1.Section = new Sections.UniformParametric1DSection() { A = 9e-4 };

e1.Material = Materials.UniformIsotropicMaterial.CreateFromYoungPoisson(210e9, 0.
→˓3);

n1.Constraints = Constraints.Fixed;

var load = new UniformLoad()!

e1.Loads.Add(load);

model.Solve_Mpc();

var r1 = n1.GetSupportReaction();

var fnc = new Func<double,double>(x=>e1.GetExactInternalForceAt(e1.LocalToIso(x)).
→˓Fz;

FuncVisualizer.VisualizeInNewWindow(fnc);

//note: code not complete

64 Chapter 6. Examples

BriefFiniteElement.NET Documentation, Release stable

6.7 Sections for BarElement

6.7.1 Example 1

Consider example below, a cantilever beam with fixes start node and free end node, under defined loads.

image todo

The section is I section with :

• Width of w = 10 cm and

• Height of h = 15 cm

• Flange thickness of tf = 5 mm

• Web thickness of tw = 5 mm

• Material is steel with elastic module of E = 210 GPa and Poisson’s ratio of nu = 0.3.

For defining the element itself we should do:

TODO

Till here the section for element is not defined. We can define the section in two ways:

• UniformParametric1DSection

• UniformGeometric1DSection

** UniformParametric1DSection: ** If we want to define section with UniformParametric1DSection, as defined in
section Cross Section, the parametric means that properties are parametrically defined one by one. for this example
assuming we know that:

• Area of section is A = 0 mm^2

• Second area moment around y axis is Iy = 0 mm^4

• Second area moment around z axis is Iz = 0 mm^4

• Torsion constant is J = 0 mm^4

var section = new UniformParametric1DSection();
section.A = 1e-4;
section.Iy = section.Iz = 1e-6;
section.J = 2e-6;

var bar = new BarElement();
bar.CrossSection = section;

** UniformGeometric1DSection: ** If we want to define section with UniformGeometric1DSection, as defined in
section Cross Section, the geometric means that properties are parametrically defined one by one. For this example
there is no need to know the properties of section, BFE will calculate them. We just need to define the section
geometry:

var section = SectionHelper.GenerateISection(0,0,0,0,0,0,0,00,0,0,0,0,);
bar.CrossSection = section;

This section contains example items.

6.7. Sections for BarElement 65

BriefFiniteElement.NET Documentation, Release stable

66 Chapter 6. Examples

CHAPTER 7

Code Desgin Documentation and History

There are two general types of elements available in BFE:

• Normal Finite Elements: Physical elements that provide stiffness, mass and damp matrices.

• MPC (Multy Point Constraint) Elements: are kind of virtual elements that binds several DoFs of a model
together

67

BriefFiniteElement.NET Documentation, Release stable

68 Chapter 7. Code Desgin Documentation and History

CHAPTER 8

Miscellaneous Topics

8.1 Solving Procedure

By solving writer means converting model and loads and other things into mathematics form, [e.g. stiffness matrice,
force and displacement vector], then solve the result linear equation system and finally convert back the results into
.NET objects.

In this library solving a linear finite element model in structural topic have these steps:

1. Forming the full load vector and full stiffness matrix and full displacement vector. note that only unconstrained
part of force and constrained part of displacement vector is filled with non-zeros in this step.

2. Applying boundary conditions due to support constrains and MPC (Multi Point Constrain) elements.

3. Solving the equation system as K x = F where x is unknown displacement

4. Finding the unknown forces (support reactions) with using unknown displacements.

5. Inserting full displacement and force values into full displacement and force vector.

6. Store full displacement and load vectors in Model for later usages.

8.1.1 Forming Full Stiffness, Load and Displacement Matrices

a Model can have unlimited Nodes, where each node have a fixed number of 6 DoF (Degree of Freedom). So the full
stiffness matrix will be a square matrix of 6*n by 6*n. Also force and displacement vectors will be vectors with length
of 6*n that we use single column matrices to store them. A double[] array also can be used but we will use single
column matrices next.

To form full stiffness matrix, we should first create a zero matrix with size of 6*n by 6*n, then assem-
ble the stiffness matrices, element by element into full stiffness matrix. This happens in MatrixAssem-
blerUtil.AssembleFullStiffnessMatrix(Model) method and returns the full stiffness matrix as a sparse matrix.
For example imagine we have a model with 10k free DoFs, then the stiffness matrix would be a matrix by
10000*10000=100’000’000 members. if each member need a 8 byte RAM as double precision value, then we’ll
need minimum 800 MB free ram to start analysing such a model. maybe 800 MB is found on all computers but about

69

BriefFiniteElement.NET Documentation, Release stable

a model with 100k free DoFs it would be around 800 GB of RAM, which is almost always is not present. Usually
most of members of stiffness matrix are zeros, and member at row i and column j is usually zero if there is no element
connecting the corresponding Nodes and DoFs. These type of matrices are named Sparse Matrices which have a few
non-zero members. A structure with 4 roofs and 25 column in each level, will have a total number of 125 node, thus
125*6=750 DoFs, but only 8250 non-zero members on stiffness matrix which is ~1.5% of full stiffness matrix. For a
10 roof structure with 100 column in each level, total nodes are 1000, total DoF are 6000 and non-zero count is 72k
members which non-zero ratio is about 0.2%, and for a 50x50x50 3d grid non-zero ratio is 0.0017%. Several tech-
niques are created for only storing the non-zero members of matrices in memory. After forming the stiffness matrix we
should apply boundary conditions and then solve a linear system of equations to find unknown displacements. These
procedures should all be done on sparse matrices. This library uses another library named CSparse.Net for handling
sparse matrices, and that library uses Compressed Column Storage (CSR) format for keeping non-zero members of
sparse matrices.

Also another zero matrix with length of 6*n by 1 is assumed as total displacement matrix and another one with same
dimension for total force matrix. If we have any settlement on nodes, we’ll fill them into appropriated members of
total displacement vector, also we should convert loads applied on elements (like distributed loads) into equivalent
nodal loads, and then add with nodal loads and then finally set members of total force vector. Note that in this stage all
members corresponding to free DoFs in total displacement matrix are zero (which are unknown nodal displacements),
also all members corresponding to fixed DoFs in force matrix are zero too (which are unknown support reactions).

8.1.2 Applying Boundary Conditions and MPC elements

After forming the total stiffness matrix and total force and displacement vectors, then we should apply the boundary
conditions. There are at least a usual way of converting the stiffness matrix into four parts, also displacement and force
vectors into two parts each like this:

𝐾 =

[︂
𝐾𝑓𝑓 𝐾𝑓𝑠

𝐾𝑠𝑓 𝐾𝑠𝑠

]︂
𝑈 =

[︂
𝑈𝑓

𝑈𝑠

]︂
𝐹 =

[︂
𝐹𝑓

𝐹𝑠

]︂
Where the f and s subscript tails in above names are related to Fixed and Not Fixed (or Released) DoFs. Then the main
equation of K * U = F will convert to this form:[︂
𝐾𝑓𝑓 𝐾𝑓𝑠

𝐾𝑠𝑓 𝐾𝑠𝑠

]︂
*
[︂
𝑈𝑓

𝑈𝑠

]︂
=

[︂
𝐹𝑓

𝐹𝑠

]︂
Expanding the matrix multiplies:

𝐾𝑓𝑓 * 𝑈𝑓 + 𝐾𝑓𝑠 * 𝑈𝑠 = 𝐹𝑓

𝐾𝑓𝑠 * 𝑈𝑓 + 𝐾𝑠𝑠 * 𝑈𝑠 = 𝐹𝑠

We have all terms known, expect 𝑈𝑓 and 𝐹𝑠. We are searching for the 𝑈𝑓 and 𝐹𝑠 which are displacement of free DoFs
and external force on fixed DoFs (e.g support reactions). So we can rewrite these into:

𝑈𝑓 = 𝐾−1
𝑓𝑓 * (𝐹𝑓 −𝐾𝑓𝑠 * 𝑈𝑠)

And then we can find 𝐹𝑠 (support reactions) from this:

𝐹𝑠 = 𝐾𝑓𝑠 * 𝑈𝑓 + 𝐾𝑠𝑠 * 𝑈𝑠

finally both unknown term will be found.

Also for applying effect of MPC elements, Since the models are linear, the master slave method is used for considering
the rigid elements. You can find a detail about how it is with this paper. In linear analysis displacement vector, force

70 Chapter 8. Miscellaneous Topics

BriefFiniteElement.NET Documentation, Release stable

vector and stiffness matrix should be determined and after some calculation, we should solve a linear equation system
and displacements will be found.

Because of reducing the count of degree of freedoms (DoF) of structure, rigid element will reduce the stiffness, mass
and damp matrix dimensions. For example, consider a problem with no settlement which can be shown as:

𝐹 = 𝐾.𝑈 then 𝑈 = 𝐾−1 * 𝐹

Let’s say we have n DoFs (in previous section we used n for total number nodes, but here as total number of DoFs,
because this section is coppied from another article). If rigid elements do connect two nodes with constrained supports,
we can define a matrix Pf (m * n) which when multiplied to the F will get a Fr vector which is force vector for Reduced
structure (after applying the rigid elements to reduce DoFs). Also can define a Pd (n * m) matrix, which when is
multiplied to Dr (Dr is displacement vector for reduced structure) will give the D which is displacement vector for
original structure as below:

Fr = Pf * F

D = Pd * Dr

Can combine these two equations with first one as:

F = K . Pd . Dr (pre multiply both sides with Pf)=> Pf . F = Fr = Pf . K . Pd . Dr

Taking Kr = Pf . K . Pd

Fr = Kr * Dr

This way, we can convert the problem into a reduced problem. Same can be applied for dynamic analysis:

M . + C . + K . X = F(t)

Taking:

X = Pd * Xr => = Pd * r => = Pd * r

Then:

M . Pd * r + C . Pd * r + K . Pd * Xr = F(t)

Premultiply which Pf:

Pf . M . Pd * r + Pf . C . Pd * r + Pf . K . Pd * Xr = Pf . F = Fr

Fr = Mr . r + Cr . r + Kr . Xr

where:

Mr = Pf . M . Pd

Cr = Pf . C . Pd

Kr = Pf . K . Pd

These two ways of solving system for unknowns and also applying effect of MPC elements, are simple ways but not
used in latest version of BFE, but in earlier version, because combining these two procedures will probably result in
a complex code and also error prone as i remember when i was dealing permutation thing and that resulted into a
class named DofMappingManager (probably still presented in the source code) with very hard usage. Instead another
method is used to apply both boundary conditions and extra eqaution of MPC element in same time. This method is
described in next.

8.1.3 Applying Boundary Conditions and MPC elements - new method

• Step 1: Extract equations related to boundary conditions and constraints

• Step 2: None

8.1. Solving Procedure 71

BriefFiniteElement.NET Documentation, Release stable

• Step 3: Create Reduced Row Echelon Form (RREF) of Step 1

• Step 4: Make pioneer members to -1 by multiplying whole row (for definition of pioneer members please
continue reading)

• Step 5: Insert each row into appropriated row of a nxn matrix where n is total number of DoFs

• Step 6: Remove extra columns

Step 1: Extract equations related to boundary conditions and constraints

A Finite Element model does have boundary conditions (e.g support DoFs and settlements), also MPC (Multi Point
Constraint) elements like rigid diaphragm, and SPC (Multi Point Constraint) elements like virtual constraints. All of
these can be represented as equations. For example:

• U 11= 0 : U 11 DoF is connected to ground without settlement

• U 12= 0.1 : U 12 DoF is connected to ground with settlement amount of 0.1 in that direction

• U 12= U 13: U 12 is equal to U 13

• U 16= 2*U 12+ 3*U 13 : U 16 is connected to U 12 and U 13with a MPC element (like rigid diaphragm or . . .).

Every boundary condition and and MPC/SPC element will give a set of these extra equations, and every equation can
be represented as a row of a matrix with column count equal to total number of DoFs in that model, plus a right hand
side vector. Above equations can turn into matrix rows plus a right hand side like below table:

Table 1: Title
Eq.
Num-
ber

Equation U 11’s
coeff.

U 12’s
coeff.

U 13’s
coeff.

U 14’s
coeff.

U 15’s
coeff.

U 16’s
coeff.

Right
Side

1 U 11=0 1 0 0 0 0 0 0
2 U 12=0.1 0 1 0 0 0 0 0.1
3 U 13= U 12 0 -1 1 0 0 0 0
4 U 16= 2*U 12+

3*U 13

0 -2 -3 0 1 0 0

Finally there will be a system with m rows and n columns and a right side vector:

TODO

𝑃1 * 𝑈 = 𝑅1

Step 3: Create Reduced Row Echelon Form (RREF) of Step 1

Next step is to compute RREF form of 𝑃1matrix calculated in step 1 with gauss elimination. We should start from
column 0, choose a row with non-zero member at column 0, then eliminate members of all other rows that have a
non-zero element at column 0. Do same thing for all columns from 1 to n, where n is total number of DoFs. The
operation will stop when in every ‘i‘th column of matrix. all members are zero or at most one non-zero element. In
other words elimination will stop when in each column there is at most one non-zero member. After elimination done
for each ‘i‘th row there is three possible cases:

1. There are one or several non-zeros on row i.

2. All members of row i are zero, also right side at row i is zero. This means the equation corresponding to that
row was not useful, but also is not a problem. For example 𝑈1 = 𝑈2, 𝑈2 = 𝑈3, 𝑈3 = 𝑈1can be result of three
SPC elements, but only two of them are useful and third one is result of first and second.

72 Chapter 8. Miscellaneous Topics

BriefFiniteElement.NET Documentation, Release stable

3. All members of row i are zero, but right side at row i is non-zero (we should also consider floating point operation
stuff, so check with small epsilon number instead of zero 0.0). This means an error. Like two inconsistent
settlements on two DoFs or nodes that are connected with a SPC or MPC element. 𝑈1 = 0.1, 𝑈2 = 0.2,
𝑈1 = 𝑈2.

Rows with all members zero and right side zero will be removed from result, and rows with all members zero but right
side non zero will cause solving procedure failure, because of invalid user input.

Finally there will be a matrix 𝑃3with o rows and n columns, that o<=m (m is total extra equation count) due to
removing useless rows. Also as this matrix is RREF form, then there are o columns with only one non-zero element.
If a member be the only non-zero member in the column, we call that member “pioneer” or “leading” member. Finally
we have 𝑃3 * 𝑈 = 𝑅3where 𝑃3is in RREF form.

Step 4: Make pioneer members equal to -1 by multiplying whole row with a coefficient

we shaould take output of last step, 𝑃3and 𝑅3. Then multiply each row and corresponding right side member with a
coefficient in a way that pioneer member turn into -1.0. result is 𝑃4and 𝑅4.

Step 5: Insert each row into appropriated row of a nxn matrix where n is total number of DoFs

Create and empty 𝑃5matrix with size n by n, also a vector 𝑅5with size n by 1. Then for each i’th row of 𝑃4with
pioneer member at column j, insert it into i’th row of 𝑃5and 𝑅5. Next we should replace the zeros on main diagonal
of 𝑃5with 1.0 and no change in 𝑅5.

Step 6: Remove extra columns

Remove columns that have pioneer member equal to -1.0 and no change to right side. Final result is 𝑃6with size n by
o and 𝑅6with size n by 1.

𝑃6is displacement expander and o is total number of master DoF count.

Notes

There is an interface named IDisplacementPermutationCalculator in the namespace BriefFiniteElementNet.Mathh
which should do all 6 steps above or an output equivalent to output of step 6.

What we want to do is to solve 𝐹𝑡 = 𝐾𝑡 * 𝑈𝑡where there are some extra equations. Maybe there are other ways to
handle this, for example maybe QR decomposition. But this is a way also. . .

Example

Step 1:

[0 0 1 1 3 0 2] [x0] = [3] [0 0 2 6 1 0 5] x [x1] = [1] [0 0 3 7 4 0 7] [x2] = [4]

[x3] [x4] [x5]

[x6]

Step 2: None

Step 3: [+0.00 +0.00 +1.00 +0.00 +4.25 +0.00 +1.75 | +4.25] [+0.00 +0.00 +0.00 +1.00 -1.25 +0.00 +0.25 | -1.25]

Step 4: 2 by 7 [+0.00 +0.00 -1.00 +0.00 -4.25 +0.00 -1.75 | -4.25] [+0.00 +0.00 +0.00 -1.00 +1.25 +0.00 -0.25 | +1.25]

8.1. Solving Procedure 73

BriefFiniteElement.NET Documentation, Release stable

Step 5: 7 by 7 [+1.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 | +0.00] [+0.00 +1.00 +0.00 +0.00 +0.00 +0.00 +0.00 |
+0.00] [+0.00 +0.00 -1.00 +0.00 -4.25 +0.00 -1.75 | -4.25] [+0.00 +0.00 +0.00 -1.00 +1.25 +0.00 -0.25 | +1.25] [+0.00
+0.00 +0.00 +0.00 +1.00 +0.00 +0.00 | +0.00] [+0.00 +0.00 +0.00 +0.00 +0.00 +1.00 +0.00 | +0.00] [+0.00 +0.00
+0.00 +0.00 +0.00 +0.00 +1.00 | +0.00] [+0.00 +0.00 +0.00 +0.00 +0.00 +0.00 +0.00 | +1.00]

step 6: result is 7 by 5 [+1.00 +0.00 +0.00 +0.00 +0.00 | +0.00] [+0.00 +1.00 +0.00 +0.00 +0.00 | +0.00] [+0.00 +0.00
-4.25 +0.00 -1.75 | -4.25] [+0.00 +0.00 +1.25 +0.00 -0.25 | +1.25] [+0.00 +0.00 +1.00 +0.00 +0.00 | +0.00] [+0.00
+0.00 +0.00 +1.00 +0.00 | +0.00] [+0.00 +0.00 +0.00 +0.00 +1.00 | +0.00]

𝑃𝑈 is left side (this 7 by 5 matrix) and R is right side vector (1 by 7 matrix) 𝑈𝑡 = 𝑃𝑈 *𝑈𝑟where t is Total, r is Reduced.

m

8.2 Install Debugger Visualizers

8.2.1 What is debugger visualizer

In visual studio when you are debugging an application, you can view the live values of variables like image below:

74 Chapter 8. Miscellaneous Topics

BriefFiniteElement.NET Documentation, Release stable

In image you can see there is a magnifier icon (debug2.png) next to test variable, this shows that there is a debugger
visualizer for string type and you can click on the icon to see the details:

BriefFiniteElement.NET library also contains debugger visualizer for visualizing the BriefFiniteElementNet.Model
instances but you have to install the visualizer first and then when in debug mode you move the cursor on any variable
of type Model, then the magnifier icon will appear and you can click on that to see your model.

Usually installing a debugger visualizer in Visual Studio is as easy as copying a bunch of dll files in this
address of your hard drive: C:Users{YOUR_USER_NAME}DocumentsVisual Studio 20XXVisualizers where
{YOUR_USER_NAME} is pointing to current user profile address and ‘20XX’ is related to installed visual studio
(2013 or 2012 or 2010 or . . .).

• note: if Visualizers folder not exists, it should be created.

8.2.2 Installing debugger visualizers inside Visual Studio

You should first Download latest source code of project. There are several solution files, for example BriefFiniteEle-
mentNet.VS2019.sln corresponds to Visual Studio 2019. There is several solution files in the package. Based on
version of your Visual Studio you should open one of these solution files:

BriefFiniteElementNet.VS2010.sln (for Visual Studio 2010) BriefFiniteElementNet.VS2012.sln (for Vi-
sual Studio 2012) BriefFiniteElementNet.VS2013.sln (for Visual Studio 2013)

BriefFiniteElementNet.VS2015.sln (for Visual Studio 2015) BriefFiniteElement-
Net.VS2019.sln (for Visual Studio 2019)

After opening the solution file, there is a project named ‘BriefFiniteElementNet.DebuggerVisualizersVS20XX’ where
VS20XX matches the Visual Studio version number running on local computer, simply right click on it and click Build
to build it like this image:

after successful build of project it does automatically copy appropriated files into the
“C:Users{YOUR_USER_NAME}DocumentsVisual Studio 20XXVisualizers” using Post-Build events of project,
and there is no need to do anything manually. The files that will copied to that address with build are:

• BriefFiniteElementNet.DebuggerVisualizers.dll

• BriefFiniteElementNet.dll

• BriefFiniteElementNet.Controls.dll

• BriefFiniteElementNet.Common.dll

• HelixToolkit.Wpf.dll

• DynamicDataDisplay.dll

Next time you debug your code, when move mouse to a variable with Model type you will see a magnifier icon like
this:

and you should simply click it to visualize and see your model like this:

8.2. Install Debugger Visualizers 75

BriefFiniteElement.NET Documentation, Release stable

76 Chapter 8. Miscellaneous Topics

BriefFiniteElement.NET Documentation, Release stable

8.2. Install Debugger Visualizers 77

BriefFiniteElement.NET Documentation, Release stable

78 Chapter 8. Miscellaneous Topics

CHAPTER 9

Common Objects

9.1 Force

Force object represents a general concentrated force in 3D (3 force component and 3 moment components).

9.1.1 Fx

Fx represents the X component of force

9.1.2 Fy

Fy represents the Y component of force

9.1.3 Fz

Fz represents the Z component of force

9.1.4 Mx

Mx represents the X component of moment

9.1.5 My

My represents the Y component of moment

79

BriefFiniteElement.NET Documentation, Release stable

9.1.6 Mz

Mz represents the Z component of moment

Examples —

var force1 = new Force(); force1.Fx = 10;//x component of force equal to 10 [N] force1.Mz = 15;//z
component of moment equal to 15 [N.m]

var force2 = new Force(10,0,0,15,0,0);//using constructor, parameters are fx,fy,fz,mx,my,mz //force2
is equal to force1

9.2 Displacement

Displacement object represents a general displacement in 3D (6 DoF, 3 straight displacement and 3 rotational).

9.2.1 Dx

Dx represents the X component of displacement (∆x)

9.2.2 Dy

Dy represents the Y component of displacement (∆y)

9.2.3 Dz

Dz represents the Z component of displacement (∆z)

80 Chapter 9. Common Objects

BriefFiniteElement.NET Documentation, Release stable

9.2.4 RX

Rx represents the X component of rotation (𝜃x)

9.2.5 Ry

Ry represents the Y component of rotation (𝜃y)

9.2.6 Rz

Rz represents the Z component of rotation (𝜃z)

Note that unit of rotations are Radians.

9.3 LoadCase

A LoadCase represents a group of loads. The LoadCase struct have a nature property (an enum type) and a title
property (with string type). LoadNature can be: Default, Dead, Live, Snow, Wind, Quake, Crane and
Other.

9.4 LoadCombination

A LoadCombination Represents a load combination which consists of a set of Loads and a Factor for each Load.

9.4.1 Examples

9.5 Point

Point object Represents a point in 3D space

9.5.1 X

X represents the X location of point

9.3. LoadCase 81

BriefFiniteElement.NET Documentation, Release stable

9.5.2 Y

Y represents the Y location of point

9.5.3 Z

Z represents the Z location of point

9.6 Vector

Vector object Represents a vector in 3D space

9.6.1 X

X represents the X component of vector

9.6.2 Y

Y represents the Y component of vector

9.6.3 Z

Z represents the Z component of vector

Brief Finite Element .NET (or BFE.NET or BFE) is an object oriented framework that enables .NET developers to do
some brief LINEAR Finite Element modelling and analysis using .NET objects.

If you like to learn by writing code, we’d recommend one of our Brief Finite Element .NET guides to get you started
with BFE.NET.

82 Chapter 9. Common Objects

	Under Construction
	Elements Available
	Finite Elements
	MPC Elements

	Loads Available
	Elemental Loads
	Nodal Loads

	Materials Available
	UniformIsotropicMaterial
	UniformAnisotropicMaterial

	Getting Started
	Download source code of BriefFiniteElement.NET library
	Create a project and compile BRiefFiniteElement from source code
	Install BFE.NET Nuget Library

	Examples
	Small 3D Truss Example
	LoadCase and LoadCombination Example
	Iso Parametric Coordination System Of Elements Example
	Inclined Frame Example
	Element Load Coordination System Example
	Cantilever Beam (Console Beam) Example
	Sections for BarElement

	Code Desgin Documentation and History
	Miscellaneous Topics
	Solving Procedure
	Install Debugger Visualizers

	Common Objects
	Force
	Displacement
	LoadCase
	LoadCombination
	Point
	Vector

